A robust approach for optimal design of plate fin heat exchangers using biogeography based optimization (BBO) algorithm
Amin Hadidi
Applied Energy, 2015, vol. 150, issue C, 196-210
Abstract:
Design of plate-fin heat exchangers is a very complex task generally based on trial and error process. Traditional designing methods are very time consuming and do not guarantee the archive of an optimal solution; therefore heuristic based computation methods are used, usually. So, in present paper a new design method proposed for optimization of plate fin heat exchangers using biogeography-based optimization (BBO) algorithm. The BBO algorithm has some advantages in detecting the global minimum compared with other heuristic algorithms. In present research the BBO scheme has been employed for optimal design of the plate fin heat exchanger by minimization of the total annual cost, heat transfer area and total pressure drops of the equipment considering main structural and geometrical parameters of the exchanger as design variables. Based on proposed approach, a full computer code was developed and three various case studies are investigated by it to illustrate the effectiveness and accuracy of the proposed method. Comparison of the results with those obtained by previous methods reveals that the BBO algorithm can be successfully employed for optimization of plate fin heat exchangers. Finally, parametric analysis carried out to evaluate the sensitivity of the proposed method to the cost and structural parameters.
Keywords: Economic optimization; Plate fin heat exchanger; Biogeography-based optimization algorithm; Sensitivity analysis; Pareto optimal solutions (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915004791
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:150:y:2015:i:c:p:196-210
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.04.024
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().