An estimation methodology for the dynamic operational rating of a new residential building using the advanced case-based reasoning and stochastic approaches
Taehoon Hong,
Choongwan Koo,
Daeho Kim,
Minhyun Lee and
Jimin Kim
Applied Energy, 2015, vol. 150, issue C, 308-322
Abstract:
To ensure the high energy performance of a new building, its operational rating should be accurately estimated in the early design phase. Toward this end, this study developed an estimation methodology for the dynamic operational rating (DOR) of a new residential building using the advanced case-based reasoning (A-CBR) and stochastic approaches. This study was conducted in three steps: (i) establishment of a case database; (ii) retrieval of similar cases using the A-CBR approach; and (iii) estimation of the dynamic operational rating using the stochastic approach. The residential buildings located in Pusan, South Korea, were selected to validate the applicability of the developed methodology. Also, this study used the mean absolute percentage error (MAPE) to evaluate the prediction accuracy of the developed methodology (which means the difference between the predicted and measured energy performance). As a result, it was determined that the MAPE of the A-CBR model (i.e., 96.8% for electricity and 86.6% for gas energy) is superior to those of the other models (i.e., the basic CBR, multiple regression analysis, and artificial neural network models). In addition, based on the stochastic approach, it was estimated that cluster No.6, as a case study, would have the letter rating of ‘B’ grade (i.e., 25Keywords: Dynamic operational rating; Residential building; Advanced case-based reasoning; Stochastic approach; Optimization process (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915004912
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:150:y:2015:i:c:p:308-322
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.04.036
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().