EconPapers    
Economics at your fingertips  
 

Two-stage evaporation strategy to improve system performance for organic Rankine cycle

Tailu Li, Zhigang Zhang, Jian Lu, Junlan Yang and Yujie Hu

Applied Energy, 2015, vol. 150, issue C, 323-334

Abstract: The organic Rankine cycle (ORC) is a promising technology for heat recovery. However, evaporator leads to the highest irreversible loss and results in reducing cycle efficiency. In this paper, the heat source was segmented into two temperature ranges, which provides the possibility of two-stage evaporation. Based on cycle configuration, parallel two-stage organic Rankine cycle (PTORC) and series two-stage organic Rankine cycle (STORC) were put forward. The objective is to evaluate system performances, thereby elucidating their respective availability. Geothermal water inlet temperature (GWIT) ranges from 90 to 120°C, with R245fa as the working fluid. The ratio of net power output to the total thermal conductance was chosen as the objective function. The results show that PTORC and STORC are significantly influenced by intermediate geothermal water temperature (IGWT) and evaporating temperatures. PTORC and STORC could evidently reduce the irreversible loss, and STORC is more significant. PTORC and STORC can output more net power, depending on cycle configuration and GWIT. STORC enhances the net power output with GWIT, whereas PTORC is just the opposite. The total thermal conductance of PTORC and STORC are almost equal with that of ORC. STORC presents more excellent system performance and deserves to be popularized in engineering applications.

Keywords: Organic Rankine cycle; Geothermal water; Cascade evaporating; Heat recovery; Performance enhancement (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (36)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915004717
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:150:y:2015:i:c:p:323-334

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2015.04.016

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:150:y:2015:i:c:p:323-334