Prediction of fuel consumption of mining dump trucks: A neural networks approach
Elnaz Siami-Irdemoosa and
Saeid R. Dindarloo
Applied Energy, 2015, vol. 151, issue C, 77-84
Abstract:
Fuel consumption of mining dump trucks accounts for about 30% of total energy use in surface mines. Moreover, a fleet of large dump trucks is the main source of greenhouse gas (GHG) generation. Modeling and prediction of fuel consumption per cycle is a valuable tool in assessing both energy costs and the resulting GHG generation. However, only a few studies have been published on fuel prediction in mining operations. In this paper, fuel consumption per cycle of operation was predicted using artificial neural networks (ANN) technique. Explanatory variables were: pay load, loading time, idled while loaded, loaded travel time, empty travel time, and idled while empty. The output variable was the amount of fuel consumed in one cycle. Mean absolute percentage error (MAPE) of 10% demonstrated applicability of ANN in prediction of the fuel consumption. The results demonstrated the considerable effect of mining trucks idle times in fuel consumption. A large portion of the unnecessary energy consumption and GHG generation, in this study, was solely due to avoidable idle times. This necessitates implementation of proper actions/remedies in form of both preventive and corrective actions.
Keywords: Fuel consumption prediction; Mining dump truck; Artificial neural networks (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915005279
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:151:y:2015:i:c:p:77-84
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.04.064
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().