Electro/photo to heat conversion system based on polyurethane embedded graphite foam
Renjie Chen,
Ruimin Yao,
Wei Xia and
Ruqiang Zou
Applied Energy, 2015, vol. 152, issue C, 183-188
Abstract:
Organic phase change materials (PCMs) have exhibited many promising potentials for thermal energy conversion and storage, but they are still confronted with many technical bottlenecks for practical application, such as low conductivity, leakage during phase transition process, and lack of functionality. In this article, a highly-efficient electro/photo to heat conversion system of polyurethane@graphite foam (PU@GF) phase change composites was successfully fabricated through in situ polymerization of polyethylene glycol (PEG) in GF. The obtained PU presents solid–solid phase transition behavior that is different from the solid–liquid phase change of original PEG, which can prevent PU from leakage even if it was loaded in micrometer pores in the GF during application. On the other side, PU can improve the thermal stability and decrease the overcooling degree of the composites in effect. Excellent conductive network was provided by the GF, with which the light absorption and thermal conductivity of the composites were enhanced dramatically. Consequently, the solid–solid phase change composites can effectively store electricity or sunlight energy. The electro-heat storage efficiency of the composites can exceed 80% at 1.2 or 1.4V, meanwhile, the photo-heat storage efficiency can close to 67% under simulated solar illumination. This result presents the highest efficiency for electro-to-heat conversion by PCMs techniques driven by a quite low voltage up to now, and will give rise to a new expectation of functional PCM application for energy conversion and storage.
Keywords: Graphite foam; Phase change material; Polyurethane; Energy conversion and storage (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915000288
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:152:y:2015:i:c:p:183-188
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.01.022
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().