Experimental test of an innovative high concentration nanofluid solar collector
Gianpiero Colangelo,
Ernani Favale,
Paola Miglietta,
Arturo de Risi,
Marco Milanese and
Domenico Laforgia
Applied Energy, 2015, vol. 154, issue C, 874-881
Abstract:
In this study, a modified flat panel solar thermal collector was built and thermal efficiency was measured with two heat transfer fluids: distillated water and Al2O3–distillated water based nanofluid at high concentration (3.0%) volume fraction of solid phase. In this work for the first time nanofluid with high nanoparticle concentration has been used thanks to a modified solar thermal collector, based on patent WO2011138752 A1, which consists in bottom and top headers properly shaped in order to reduce sedimentation of clusters of nanoparticles. Thermal efficiency has been measured through an experimental setup, according to EN 12975-2 standard. Experimental results showed that an increase of thermal efficiency up to 11.7% compared to that measured with water has been obtained by using nanofluid. Besides effect of nanofluid on thermal efficiency is greater at high temperatures.
Keywords: Nanofluid; Al2O3; Sedimentation; Flat panel solar thermal collector; Convective heat transfer coefficient (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915006418
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:154:y:2015:i:c:p:874-881
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.05.031
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().