EconPapers    
Economics at your fingertips  
 

Macroencapsulation and characterization of phase change materials for latent heat thermal energy storage systems

Tanvir E. Alam, Jaspreet S. Dhau, D. Yogi Goswami and Elias Stefanakos

Applied Energy, 2015, vol. 154, issue C, 92-101

Abstract: An innovative technique to encapsulate PCMs that melt in the 120–350°C temperature range is presented. The developed technique does not require a sacrificial layer to accommodate the volumetric expansion of the PCMs on melting. The encapsulation consists of coating a non-reactive polymer over the PCM pellet followed by deposition of a metal layer by a novel non-vacuum metal deposition technique. The fabricated capsules have survived more than 2200 thermal cycles, which is equivalent to about seven years of service in a thermal energy storage system. Thermophysical properties of the PCMs were investigated by DSC/TGA, IR and weight change analysis. Thermal cycling test showed no significant degradation in these properties at any stage of testing.

Keywords: Thermal energy storage; Latent heat storage; Phase change materials; Encapsulation (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (35)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915005498
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:154:y:2015:i:c:p:92-101

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2015.04.086

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:154:y:2015:i:c:p:92-101