A decomposition–ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting
Lean Yu (),
Zishu Wang and
Ling Tang
Applied Energy, 2015, vol. 156, issue C, 267 pages
Abstract:
To enhance prediction accuracy and reduce computation complexity, a decomposition–ensemble methodology with data-characteristic-driven reconstruction is proposed for crude oil price forecasting, based on two promising principles of “divide and conquer” and “data-characteristic-driven modeling”. Actually, this proposed model improves the existing decomposition–ensemble techniques in the “divide and conquer” framework, by formulating and incorporating a data-characteristic-driven reconstruction method based on the “data-characteristic-driven modeling”. Four main steps are involved in the proposed methodology, i.e., data decomposition for simplifying the complex data, component reconstruction based on the “data-characteristic-driven modeling” for capturing inner factors and reducing computational cost, individual prediction for each reconstructed component via a certain artificial intelligence (AI) tool, and ensemble prediction for final output. In the proposed data-characteristic-driven reconstruction, all decomposed modes are thoroughly analyzed to explore the hidden data characteristics, and are accordingly reconstructed into some meaningful components. For illustration and verification, the West Texas Intermediate (WTI) and Brent crude oil spot prices are used as the sample data, and the empirical results indicate that the proposed model statistically outperforms all considered benchmark models (including popular AI single models, typical decomposition–ensemble models without reconstruction, and similar decomposition–ensemble models with other existing reconstruction methods), since it has higher prediction accuracy and less computational time.
Keywords: Decomposition ensemble model; Divide and conquer; Data characteristics; Reconstruction; Time series analysis; Crude oil price forecasting (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (69)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915008545
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:156:y:2015:i:c:p:251-267
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.07.025
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().