Performance analysis of a dual-loop organic Rankine cycle (ORC) system with wet steam expansion for engine waste heat recovery
Jian Song and
Chun-wei Gu
Applied Energy, 2015, vol. 156, issue C, 280-289
Abstract:
A dual-loop organic Rankine cycle (ORC) system is designed to recover the waste heat of a diesel engine. The high-temperature (HT) loop utilizes the heat load of the engine exhaust gas, and the low-temperature (LT) loop uses the heat load of the jacket cooling water and the residual heat of the HT loop sequentially. These two loops are coupled via a shared heat exchanger. Water is selected as the working fluid for the HT loop and wet steam expansion, which can be implemented through screw expanders, is exploited. The dryness fraction of the wet steam at the inlet of the expander can be adjusted to attain a suitable evaporation temperature and provide a better temperature match with the heat source. The working fluid candidates for the LT loop are chosen to be R123, R236fa and R245fa. The influence of the HT loop parameters on the performance of the LT loop is evaluated. The simulation results reveal that under different operating conditions of the HT loop, the pinch point of the LT loop occurs at different locations and therefore, results in different evaporation temperatures and other thermal parameters. The maximum net power output of the dual-loop ORC system reaches 115.1kW, which leads to an increase of 11.6% on the original power output of the diesel engine.
Keywords: ORC; Dual-loop system; Wet steam expansion; Engine waste heat recovery (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (56)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191500848X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:156:y:2015:i:c:p:280-289
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.07.019
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().