EconPapers    
Economics at your fingertips  
 

Multivariate statistical and similarity measure based semiparametric modeling of the probability distribution: A novel approach to the case study of mid-long term electricity consumption forecasting in China

Zhen Shao, Fei Gao, Qiang Zhang and Shan-Lin Yang

Applied Energy, 2015, vol. 156, issue C, 502-518

Abstract: To achieve the goal of drawing up optimal plans for power generation, decision makers need an appropriate methodology to effectively identify the pivotal aspects of electricity consumption fluctuation and anticipate the future trend. The parameter identification of conventional statistical approach mainly relies on distributional assumptions and functional form restrictions, which might be problematic for the real application. This paper addresses these issues by implementing a novel semi-parametric modeling approach, which is suitable for investigating the uncertainties in the mid-long term forecast and estimating the probability distributions of future demand. To identify the significant impact factors of the electricity consumption, a new Kullback–Liebler (K–L) divergence based similarity measure strategy is designed. A case study concerning the electricity demand forecasting in China demonstrates the applicability of the proposed approach and verifies the feasibility of establishing explicit functional dependency between external variables and electricity consumption. Despite the complexity, notable reductions in the number of forecasting error are obtained due to the adoption of three indicators: deposits in financial institutions, exports, and imports.

Keywords: Semi-parametric regression; Similarity measure; Probability distribution forecast; Mid-long term demand forecast; Variable simulation (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915008661
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:156:y:2015:i:c:p:502-518

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2015.07.037

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:156:y:2015:i:c:p:502-518