EconPapers    
Economics at your fingertips  
 

Diesel autothermal reforming with hydrogen peroxide for low-oxygen environments

Gwangwoo Han, Sangho Lee and Joongmyeon Bae

Applied Energy, 2015, vol. 156, issue C, 99-106

Abstract: To operate fuel cells effectively in low-oxygen environments, such as in submarines and unmanned underwater vehicles, a hydrogen source with high hydrogen storage density is required. In this paper, diesel autothermal reforming (ATR) with hydrogen peroxide as an alternative oxidant is proposed as a hydrogen production method. Diesel fuel has higher hydrogen density than metal hydrides or other hydrocarbons. In addition, hydrogen peroxide can decompose into steam and oxygen, which are required for diesel ATR. Moreover, both diesel fuel and hydrogen peroxide are liquid states, enabling easy storage for submarine applications. Hydrogen peroxide exhibited the same characteristics as steam and oxygen when used as an oxidant in diesel reforming when pre-decomposition method was used. The thermodynamically calculated operating conditions were a steam-to-carbon ratio (SCR) of 3.0, an oxygen-to-carbon ratio (OCR) of 0.5, and temperatures below 700°C to account for safety issues associated with hydrogen peroxide use and exothermic reactions. Catalytic activity and stability tests over Ni–Ru (19.5–0.5wt.%)/Ce0.9Gd0.1O2−x were conducted using various diesel compounds. Furthermore, long-term diesel ATR tests were conducted for 200h using Korean commercial diesel. The degradation rate was 3.67%/100h without the production of ethylene.

Keywords: Diesel; Hydrogen peroxide; Autothermal reforming; Hydrogen; Low-oxygen environments (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915007941
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:156:y:2015:i:c:p:99-106

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2015.06.036

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:156:y:2015:i:c:p:99-106