EconPapers    
Economics at your fingertips  
 

Chemical-looping combustion using combined iron/manganese/silicon oxygen carriers

Malin Källén, Magnus Rydén, Anders Lyngfelt and Tobias Mattisson

Applied Energy, 2015, vol. 157, issue C, 330-337

Abstract: Combined oxides of iron, manganese and silicon have been used as oxygen carriers for chemical-looping combustion. Three materials with varying composition of iron, manganese and silicon have been evaluated in oxygen release experiments and during continuous operation with syngas and natural gas as fuels. The concentration of oxygen released increased as a function of temperature and the highest concentrations of oxygen were measured with the material with the highest fraction of manganese. It was also this material which gave the best conversion of both syngas and natural gas; essentially full conversion of syngas and above 95% conversion of natural gas above 900°C. The other two materials showed similar performance, albeit with higher syngas conversion for the material with the lowest manganese fraction and the lowest conversion of natural gas for the same material. The materials lasted for 10–14h of operation with fuel addition before circulation disruption occurred, which was likely caused by particle attrition in all three cases. A phase diagram of the iron–manganese–silicon–oxide system was constructed and the possible relevant phase transitions were identified. This analysis showed that more phase transitions could be expected for the materials with higher manganese content which could explain the superior performance during fuel operation of the material with the highest manganese content. It should however be noted that this material was operated with the highest fuel reactor inventory per thermal power which could also be a contributing factor to the better performance of this material.

Keywords: Chemical-looping combustion; Chemical-looping with oxygen uncoupling; Combined oxide; Iron–manganese–silicon oxide; Carbon dioxide capture (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915004389
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:157:y:2015:i:c:p:330-337

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2015.03.136

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:157:y:2015:i:c:p:330-337