EconPapers    
Economics at your fingertips  
 

Comparison of feature selection methods using ANNs in MCP-wind speed methods. A case study

José A. Carta, Pedro Cabrera, José M. Matías and Fernando Castellano

Applied Energy, 2015, vol. 158, issue C, 490-507

Abstract: Recent studies in the field of renewable energies, and specifically in wind resource prediction, have shown growing interest in proposals for Measure–Correlate–Predict (MCP) methods which simultaneously use data recorded at various reference weather stations. In this context, the use of a high number of reference stations may result in overspecification with its associated negative effects. These include, amongst others, an increase in the estimation error and/or overfitting which could be detrimental to the generalisation capacity of the model when handling new data (prediction).

Keywords: Measure–correlate–predict method; Artificial neural networks; Wind speed; Wind direction; Feature selection; Cross-validation technique (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915010387
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:158:y:2015:i:c:p:490-507

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2015.08.102

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:158:y:2015:i:c:p:490-507