Influence of leg sizing and spacing on power generation and thermal stresses of thermoelectric devices
Ugur Erturun,
Kaan Erermis and
Karla Mossi
Applied Energy, 2015, vol. 159, issue C, 19-27
Abstract:
The influence of leg dimensions and spacing on power-generation and thermo-mechanical performance of thermoelectric devices was investigated using numerical and statistical analyses tools. Bismuth-telluride based thermoelectric device models with rectangular-prism and cylindrical legs were simulated for a temperature range of 20–120°C and various leg heights between 1 and 5mm, widths/diameters between 1 and 2mm, and spacing between 0.5 and 1.5mm. Predicted power output, conversion efficiencies, and thermal stresses were validated with less than 8.9%, 1.2%, and 6.6% variations respectively. It is found that both leg width and height have a significant effect on power generation and thermal stresses: The relationship between power generation performance and thermal stress levels is inverse. Although leg spacing has effect on thermal stress and conversion efficiency, its effect on power output is negligible.
Keywords: Thermoelectric device; Thermoelectric generator; Power output; Conversion efficiency; Thermal stress (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191501048X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:159:y:2015:i:c:p:19-27
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.08.112
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().