Design and characterisation of a high powered energy dense zeolite thermal energy storage system for buildings
Kévyn Johannes,
Frédéric Kuznik,
Jean-Luc Hubert,
Francois Durier and
Christian Obrecht
Applied Energy, 2015, vol. 159, issue C, 80-86
Abstract:
This paper presents the design and the characterisation of a high powered energy dense zeolite thermal heat storage system using water vapour sorbate. The specification requirements of the system are to supply a heating power of 2kW during 2h in order to shave the electricity peak loads in a house. The open reactor has been designed, built and instrumented with temperature sensors, chilled mirror hygrometer and airflow meter. Several tests have been carried out both during hydration – heat release – and dehydration – heat storage. Tests have also been carried out for different flow rates, relative humidity and temperatures of hydration. The results show that the reactor can supply a constant power of 2.25kW during more than two hours, namely 27.5Wkg−1 of material.
Keywords: Thermochemical process; Open sorption process; Zeolite; Thermal storage (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (32)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915010454
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:159:y:2015:i:c:p:80-86
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.08.109
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().