Paraffin/expanded vermiculite composite phase change material as aggregate for developing lightweight thermal energy storage cement-based composites
Biwan Xu,
Hongyan Ma,
Zeyu Lu and
Zongjin Li
Applied Energy, 2015, vol. 160, issue C, 358-367
Abstract:
In this study, a new paraffin/expanded vermiculite composite phase change material (PCM) was tailor-made as aggregate for developing lightweight thermal energy storage cement-based composites (LW-TESCCs). Vermiculite calcined at 800°C for 1h (EVM-800) can be considered as the optimum paraffin supporting matrix candidate, as it has the best expanded microstructure and crystallization. The composite PCM was fabricated at a paraffin-to-EVM-800 weight ratio of 0.6:1.0 by the vacuum impregnation method. The results of scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) show that the paraffin can be well vacuum drawn into the expanded interlayer spaces of EVM-800, and that the paraffin and EVM-800 are chemically inert. The differential scanning calorimetry (DSC) results reveal that the composite PCM has an onset melting temperature of 27.0±0.1°C and latent heat of 77.6±4.3J/g, and good thermal stability is clearly suggested by the thermogravimetric analysis (TGA) results. Moreover, the LW-TESCCs with bulk densities below 1500kg/m3 were further developed by incorporating the composite PCM as sand replacement. It is found that the LW-TESCCs have significantly improved thermal resistance performance and well-endowed thermal storage capabilities. Thus, it can be expected that the potential applications of the LW-TESCCs in building envelopes would significantly contribute to reducing indoor air temperature fluctuations and in saving energy.
Keywords: Paraffin; Expanded vermiculite; Phase change material; Thermal energy storage; Lightweight cement-based composite (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915011769
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:160:y:2015:i:c:p:358-367
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.09.069
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().