Effect of choked outlet on transient energy growth analysis of a thermoacoustic system
Dan Zhao and
Lei Li
Applied Energy, 2015, vol. 160, issue C, 502-510
Abstract:
Thermoacoustic instability occurs in many practical combustion systems. These systems are non-normal and associated with transient growth of acoustic disturbances. If the transient growth is large enough, then thermoacoustic instability may be triggered. In this work, transient energy growth analysis of a thermoacoustic system with a choked outlet is conducted. The effect of the choked boundary is studied by using an analytical and a linearized Euler equation (LEE) method. To quantify the transient growth, two energy measures are defined and calculated. One is associated with the acoustical energy. The other is the total energy of both entropy and acoustic fluctuations. Comparison is made between the transient growth results obtained from the analytical method and those from the LEE method. It is found that the transient growth analysis of the total energy by using the analytical model with the expression of the choked outlet is consistent with that by using the LEE method. However, when only acoustical energy is considered, the analytical model may leads to a wrong prediction of transient growth. The present work opens up new applicable way to predict transient stability behaviors of a practical engine system ended with a choked outlet.
Keywords: Combustion instability; Choked nozzle; Transient growth; Non-normality; Non-orthogonality; Thermoacoustic instability (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915011873
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:160:y:2015:i:c:p:502-510
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.09.078
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().