Numerical investigation on the effects of injection rate shaping on combustion and emission characteristics of biodiesel fueled CI engine
Balaji Mohan,
Wenming Yang,
Wenbin Yu,
Kun Lin Tay and
Siaw Kiang Chou
Applied Energy, 2015, vol. 160, issue C, 737-745
Abstract:
Varying fuel injection strategies is one of the promising methods to reduce engine out emissions and improve its performance as injection characteristics have great influences on combustion process. Out of various injection strategies, injection rate shaping is potentially an effective technique to reduce emission from engines. Injection rate shaping helps in reducing NOx emissions and reduces combustion noise. This work investigates the effect of injection rate shaping on combustion and emission characteristics of a direct injection diesel engine fueled by biodiesel. The CFD simulations were performed using multi-dimensional KIVA-4 code coupled with CHEMKIN chemistry solver. A detailed chemical kinetics of methyl decanoate (MD) and methyl-9-decenoate (MD9D) with 112 species and 498 reactions were used as surrogate fuel for biodiesel. The injection rate shapes were varied in terms of boot length (long, medium and short boot length) and boot pressure (low, medium and high boot pressure) and it was found from the results that a trade-off between NOx and soot emissions were obtained for long boot length, and high boot pressure injection rate profiles.
Keywords: Injection rate shaping; Boot length; Boot pressure; CFD simulation; Biodiesel (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915009678
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:160:y:2015:i:c:p:737-745
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.08.034
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().