A quasi-dynamic simulation model for direct steam generation in parabolic troughs using TRNSYS
Mario Biencinto,
Lourdes González and
Loreto Valenzuela
Applied Energy, 2016, vol. 161, issue C, 133-142
Abstract:
This work describes and evaluates a new simulation model for direct steam generation in parabolic-trough solar collectors. In direct steam generation, water is heated and evaporated through a solar field to feed a steam Rankine cycle or an industrial process. However, the behaviour of the involved multiphase fluid poses some challenges to simulation models. The model explained in this work is based on a steady-state approach but deals with transient conditions such as start-up, shutdown and clouds in a reasonable computing time. A new simulation tool is implemented in the TRNSYS software environment by means of new components that are suitable to be integrated into a whole solar plant model in order to carry out long-term energy production analyses with low computational resources. The main advantages of the new quasi-dynamic approach include fast computation with satisfactory accuracy; consideration of thermal inertia when addressing transient conditions; and flexibility to use different types of collector or solar field configurations. The performance of the model is validated with real experimental data obtained from the DISS solar test loop in Plataforma Solar de Almería, Spain. This paper describes the modelling approach and summarizes the comparison of simulation results with measurements taken at the DISS facility.
Keywords: Direct steam generation; Parabolic-trough collector; Simulation model (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915012283
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:161:y:2016:i:c:p:133-142
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.10.001
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().