EconPapers    
Economics at your fingertips  
 

Modeling and multi-objective optimization of a complex CHP process

Sandra Seijo, Inés del Campo, Javier Echanobe and Javier García-Sedano

Applied Energy, 2016, vol. 161, issue C, 309-319

Abstract: In this paper, the optimization of a real Combined Heat and Power (CHP) plant and a slurry drying process is proposed. Artificial Neural Networks (ANNs) and Adaptive Neuro-Fuzzy Inference Systems (ANFISs) are used to generate predictive models of the process. A dataset collected over a one-year period, with variables for the whole plant, is used to generate the predictive models. First, data mining techniques are used to obtain a representative dataset for the process as well as the input and target parameters for each model. Subsequently, models are used to optimize the plant performance in order to maximize the effective electrical efficiency of the process. For this purpose, 12 input parameters are selected as decision variables, i.e., variables which can change their values to optimize the plant. Plant performance optimization is a multi-objective problem with three goals: to maximize electrical production, minimize fuel consumption and maximize the amount of heat used in the slurry process. The optimization algorithm calculates the values of the decision variables for each time-step using Gradient Descent Methods (GDM). The simulation results show that optimization using a multi-objective function increases the CHP plant’s effective electrical efficiency by around 3% on average.

Keywords: Artificial Neural Networks; Adaptive Neuro-Fuzzy Inference System; CHP; Process modeling; Multi-objective optimization (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915012301
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:161:y:2016:i:c:p:309-319

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2015.10.003

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:161:y:2016:i:c:p:309-319