Capturing the invisible resource: Analysis of waste heat potential in Chinese industry
Hongyou Lu,
Lynn Price and
Qi Zhang
Applied Energy, 2016, vol. 161, issue C, 497-511
Abstract:
Waste heat recovery and utilization represents a missed opportunity to reduce China’s total energy use, decrease carbon dioxide emissions, and improve air quality. Currently, China does not have a standardized or transparent methodology to quantify the waste heat potential in the industrial sector, which accounts for more than two thirds of China’s primary energy consumption. This paper presents the results of thermal energy modeling to quantify the technical maximum waste heat potential in three energy-intensive industrial sectors: cement, iron and steel, and glass. In addition, this paper identifies the practical potential for producing electricity from waste heat in these sectors. The analysis finds that the glass sector has the highest waste heat to power generation potential per unit of production basis among the studied sectors. This paper provides key principles for managing waste heat in the industrial sector and key sector characteristics for implementing waste heat to power generation technologies.
Keywords: Waste heat potential; Waste heat to power generation; Industry; China (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (33)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915012878
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:161:y:2016:i:c:p:497-511
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.10.060
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().