An organic group contribution approach to radiative efficiency estimation of organic working fluid
Xinxin Zhang,
Noriyuki Kobayashi,
Maogang He and
Jingfu Wang
Applied Energy, 2016, vol. 162, issue C, 1205-1210
Abstract:
The ratification of the Montreal Protocol in 1987 and the Kyoto Protocol in 1997 mark an environment protection era of the development of organic working fluid. Ozone depletion potential (ODP) and global warming potential (GWP) are two most important indices for the quantitative comparison of organic working fluid. Nowadays, more and more attention has been paid to GWP. The calculation of GWP is an extremely complicated process which involves interactions between surface and atmosphere such as atmospheric radiative transfer and atmospheric chemical reactions. GWP of a substance is related to its atmospheric abundance and is a variable in itself. However, radiative efficiency is an intermediate parameter for GWP calculation and it is a constant value used to describe inherent property of a substance. In this paper, the group contribution method was adopted to estimate the radiative efficiency of the organic substance which contains more than one carbon atom. In most cases, the estimation value and the standard value are in a good agreement. The biggest estimation error occurs in the estimation of the radiative efficiency of fluorinated ethers due to its plenty of structure groups and its complicated structure compared with hydrocarbon. This estimation method can be used to predict the radiative efficiency of newly developed organic working fluids.
Keywords: Organic substance; Global warming potential; Radiative efficiency; Group contribution method (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915009654
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:162:y:2016:i:c:p:1205-1210
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.08.032
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().