Efficiency improvement of heat storage materials for MgO/H2O/Mg(OH)2 chemical heat pumps
E. Mastronardo,
L. Bonaccorsi,
Y. Kato,
E. Piperopoulos and
C. Milone
Applied Energy, 2016, vol. 162, issue C, 39 pages
Abstract:
MgO/H2O/Mg(OH)2 chemical heat storage of waste energy from industrial processes is a promising technology in view of a more efficient use and saving of primary energy sources. A new approach was used to develop a hybrid heat storage material made of magnesium hydroxide (Mg(OH)2) and exfoliated graphite (which is used to improve the heat transfer with its high thermal conductivity). Mg(OH)2 nanoplatelets were directly grown on graphite surface via a deposition–precipitation method to increase the compatibility between the two materials. The material thus obtained, named DP-MG, was experimentally tested to determine its heat storage and output capacities. An improvement of the material efficiency was obtained with a higher storage capacity at lower reaction temperature and a higher heat output rate.
Keywords: Chemical heat pump; Magnesium hydroxide; Exfoliated graphite; Deposition–precipitation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915012933
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:162:y:2016:i:c:p:31-39
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.10.066
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().