EconPapers    
Economics at your fingertips  
 

Exergoeconomic and environmental analyses of an air conditioning system using thermal energy storage

A.H. Mosaffa and L. Garousi Farshi

Applied Energy, 2016, vol. 162, issue C, 515-526

Abstract: In this work, a combination of a latent heat thermal storage unit and a refrigeration system is presented as an air conditioning system. Overall system, including charging and discharging processes is analyzed for different phase change materials (PCMs) from exergoeconomic and environmental points of view. Based on comfort condition, three cases are selected with different size of PCM slabs and different PCMs: RT27, S27 and SP25. When the charging process takes place during the whole of off-peak hours the following results are obtained: (1) the system using SP25 has the highest value of the coefficient of performance; (2) the system using RT27 has the highest value of exergy efficiency and (3) the system using S27 has the lowest value of total cost rate. Finally, in order to obtain the best balance between the exergy destruction cost rate and the capital cost rate, the exergoeconomic factor is defined for each component, for different cases when system operates in the best performance conditions.

Keywords: Latent heat thermal energy storage; Air conditioning; Exergoeconomic analysis; Environmental analysis; Energy analysis; Cooling applications (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915013628
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:162:y:2016:i:c:p:515-526

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2015.10.122

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:162:y:2016:i:c:p:515-526