EconPapers    
Economics at your fingertips  
 

Simulation-based optimization of an integrated daylighting and HVAC system using the design of experiments method

Wonuk Kim, Yongseok Jeon and Yongchan Kim

Applied Energy, 2016, vol. 162, issue C, 666-674

Abstract: The use of daylight in buildings to save energy while providing satisfactory environmental comfort has increased. Integration of the daylighting and thermal energy systems is necessary for environmental comfort and energy efficiency. In this study, an integrated meta-model for a daylighting, heating, ventilating, and air conditioning (IDHVAC) system was developed to predict building energy performance by artificial lighting regression models and artificial neural network (ANN) models, with a database that was generated using the EnergyPlus model. The design of experiments (DOE) method was applied to generate the database that was used to train robust ANN models without overfitting problems. The IDHVAC system was optimized using the integrated meta-model and genetic algorithm (GA), to minimize total energy consumption while satisfying both thermal and visual comfort for occupants. During three months in the winter, the GA-optimized IDHVAC model showed, on average, 13.7% energy savings against the conventional model.

Keywords: Integrated energy system modelling; Daylighting; Genetic algorithm (GA); Artificial neural network (ANN); Design of experiments (DOE); Energy efficiency (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915013951
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:162:y:2016:i:c:p:666-674

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2015.10.153

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:162:y:2016:i:c:p:666-674