Improvement of transient supercooling of thermoelectric coolers through variable semiconductor cross-section
Hao Lv,
Xiao-Dong Wang,
Tian-Hu Wang and
Chin-Hsiang Cheng
Applied Energy, 2016, vol. 164, issue C, 508 pages
Abstract:
In this work, a new design of thermoelectric cooler (TEC) with variable semiconductor cross-sectional area is proposed to improve its transient supercooling characteristics. Four key evaluation indicators of transient supercooling for the conventional and new designs, including the minimum cold end temperature, maximum temperature overshoot, holding time of transient state, and recovery time ready for next steady-state, are examined and compared by a three-dimensional, transient, and multiphysics model. Two additional effects are observed in the TEC with variable semiconductor cross-sectional area. First, the variable cross-sectional area makes the thermal circuit asymmetric, so that Joule heat is preferentially conducted toward to the end with a larger cross-sectional area. Second, more Joule heat is produced close to the end with a smaller cross-sectional area. The present simulations find that these two effects can be utilized to achieve the desired evaluation indicators by changing the cross-sectional area ratio of hot end to cold end. When a lower cold end temperature, a smaller temperature overshoot, and/or a longer holding time are/is required, a larger cross-sectional area at the cold end is recommended. However, to achieve a shorter recovery time, a smaller cross-sectional area at the cold end is needed.
Keywords: Thermoelectric cooler; Transient supercooling; Variable cross-section; Simulation; Minimum cold-end temperature (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915015184
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:164:y:2016:i:c:p:501-508
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.11.068
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().