CFD analysis of melting process in a shell-and-tube latent heat storage for concentrated solar power plants
F. Fornarelli,
S.M. Camporeale,
B. Fortunato,
M. Torresi,
P. Oresta,
L. Magliocchetti,
A. Miliozzi and
G. Santo
Applied Energy, 2016, vol. 164, issue C, 722 pages
Abstract:
A latent heat storage system for concentrated solar plants (CSP) is numerically examined by means of CFD simulations. This study aims at identifying the convective flows produced within the melted phase by temperature gradients and gravity. Simulations were carried out on experimental devices for applications to high temperature concentrated solar power plants. A shell-and-tube geometry composed by a vertical cylindrical tank, filled by a Phase Change Material (PCM) and an inner steel tube, in which the heat transfer fluid (HTF) flows, from the top to the bottom, is considered. The conjugate heat transfer process is examined by solving the unsteady Navier–Stokes equations for HTF and PCM and conduction for the tube. In order to take into account the buoyancy effects in the PCM tank the Boussinesq approximation is adopted. The results show that the enhanced heat flux, due to natural convective flow, reduce of about 30% the time needed to charge the heat storage. A detailed description of the convective motion in the melted phase and the heat flux distribution between the HTF and PCM are reported. The effect of the mushy zone constant is also investigated.
Keywords: CFD; Thermal Energy Storage (TES); Phase Change Material (PCM); Molten salts; Shell and tube; Enthalpy-porosity model (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (35)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191501586X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:164:y:2016:i:c:p:711-722
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.11.106
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().