EconPapers    
Economics at your fingertips  
 

Computer simulations of the influence of geometry in the performance of conventional and unconventional lithium-ion batteries

D. Miranda, C.M. Costa, A.M. Almeida and S. Lanceros-Méndez

Applied Energy, 2016, vol. 165, issue C, 318-328

Abstract: In order to optimize battery performance, different geometries have been evaluated taking into account their suitability for different applications. These different geometries include conventional, interdigitated batteries and unconventional geometries such as horseshoe, spiral, ring, antenna and gear batteries. The geometry optimization was performed by the finite element method, applying the Doyle/Fuller/Newman model. At 330C, the capacity values for conventional, ring, spiral, horseshoe, gear and interdigitated geometries are 0.58Ahm−2, 149Ahm−2, 182Ahm−2, 216Ahm−2, 289Ahm−2 and 318Ahm−2, respectively.

Keywords: Computer simulation; Lithium-ion battery; Geometrical factors; Discharge capacity (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915016414
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:165:y:2016:i:c:p:318-328

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2015.12.068

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:165:y:2016:i:c:p:318-328