A distributed decision framework for building clusters with different heterogeneity settings
Ruholla Jafari-Marandi,
Mengqi Hu and
OluFemi A. Omitaomu
Applied Energy, 2016, vol. 165, issue C, 393-404
Abstract:
In the past few decades, extensive research has been conducted to develop operation and control strategy for smart buildings with the purpose of reducing energy consumption. Besides studying on single building, it is envisioned that the next generation buildings can freely connect with one another to share energy and exchange information in the context of smart grid. It was demonstrated that a network of connected buildings (aka building clusters) can significantly reduce primary energy consumption, improve environmental sustainability and building’s resilience capability. However, an analytic tool to determine which type of buildings should form a cluster and what is the impact of building clusters’ heterogeneity based on energy profile to the energy performance of building clusters is missing. To bridge these research gaps, we propose a self-organizing map clustering algorithm to divide multiple buildings to different clusters based on their energy profiles, and a homogeneity index to evaluate the heterogeneity of different building clusters configurations. In addition, a bi-level distributed decision model is developed to study the energy sharing in the building clusters. To demonstrate the effectiveness of the proposed clustering algorithm and decision model, we employ a dataset including monthly energy consumption data for 30 buildings where the data is collected every 15min. It is demonstrated that the proposed decision model can achieve at least 13% cost savings for building clusters. The results show that the heterogeneity of energy profile is an important factor to select battery and renewable energy source for building clusters, and the shared battery and renewable energy are preferred for more heterogeneous building clusters.
Keywords: Distributed decision making; Electricity consumption behavior; Self-organizing map; Genetic algorithm (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191501661X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:165:y:2016:i:c:p:393-404
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.12.088
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().