Transient performance evaluation of waste heat recovery rankine cycle based system for heavy duty trucks
Vincent Grelet,
Thomas Reiche,
Vincent Lemort,
Madiha Nadri and
Pascal Dufour
Applied Energy, 2016, vol. 165, issue C, 878-892
Abstract:
The study presented in this paper aims to evaluate the transient performance of a waste heat recovery Rankine cycle based system for a heavy duty truck and compare it to steady state evaluation. Assuming some conditions to hold, simple thermodynamic simulations are carried out for the comparison of several fluids. Then a detailed first principle based model is also presented. Last part is focused on the Rankine cycle arrangement choice by means of model based evaluation of fuel economy for each concept where the fuels savings are computed using two methodologies. Fluid choice and concept optimization are conducted taking into account integration constraints (heat rejection, packaging, …). This paper shows the importance of the modeling phase when designing Rankine cycle based heat recovery systems and yields a better understanding when it comes to a vehicle integration of a Rankine cycle in a truck.
Keywords: Waste heat recovery system; Modeling; Thermodynamic; Rankine cycle; Heavy duty trucks (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915014452
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:165:y:2016:i:c:p:878-892
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.11.004
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().