EconPapers    
Economics at your fingertips  
 

Online dynamic equalization adjustment of high-power lithium-ion battery packs based on the state of balance estimation

Shunli Wang, Liping Shang, Zhanfeng Li, Hu Deng and Jianchao Li

Applied Energy, 2016, vol. 166, issue C, 44-58

Abstract: A novel concept named as state of balance (SOB) is proposed and its online dynamic estimation method is presented for the high-power lithium-ion battery (LIB) packs, based on which the online dynamic equalization adjustment is realized aiming to protect the operation safety of its power supply application. The core parameter detection method based on the specific moving average algorithm is studied because of their identical varying characteristics on the individual cells due to the manufacturing variability and other factors, affecting the performance of the high-power LIB pack. The SOB estimation method is realized with the detailed deduction, in which a dual filter consisting of the Unscented Kalman filter (UKF), equivalent circuit model (ECM) and open circuit voltage (OCV) is used in order to predict the SOB state. It is beneficial for the energy operation and the energy performance state can be evaluated online prior to the adjustment method based on the terminal voltage consistency. The energy equalization is realized that is based on the credibility reasoning together with the equalization model building process. The experiments including the core parameter detection, SOB estimation and equalization adjustment are done and the experimental results are analyzed. The experiment results show that the numerical Coulomb efficiency is bigger than 95%. The cell voltage measurement error is less than 5mV and the terminal voltage measurement error of the LIB pack is less than 1% FS. The measurement error of the battery discharge and charge maintenance current is less than 1% FS. The SOB estimation error is less than 5% in the laboratory room, the temperature of which is about 25°C. The equalization charging current is 2A and the equalization discharging current is 4.4A, which can realize the real-time energy equalization adjustment among the connected cells in the LIB pack, guaranteeing its safety in the power supply application.

Keywords: Power lithium-ion battery; State of balance; Electrical unscented Kalman filtering; Balance strategy; Energy equalization (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916000325
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:166:y:2016:i:c:p:44-58

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.01.013

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:166:y:2016:i:c:p:44-58