A bi-layer optimization based temporal and spatial scheduling for large-scale electric vehicles
Lifu He,
Jun Yang,
Jun Yan,
Yufei Tang and
Haibo He
Applied Energy, 2016, vol. 168, issue C, 179-192
Abstract:
Electric vehicle (EV) is a promising, environmental friendly technique for its potential to reduce the using of fossil fuels. Massive EVs pose both opportunities and challenges for power systems, especially with the growing amount of wind-power integration. This paper investigates the problem of collaborative optimization scheduling of generators, EVs and wind power. A novel bi-layer optimization of transmission and distribution system is proposed to solve the scheduling problem of EVs charging and discharging load from respective time and space domain in the presence of wind-power. The upper layer optimization in transmission grid coordinates EVs with thermal generators, base load, with the consideration of wind power, to optimize load periods of EVs in the time domain. The lower layer optimization in distribution grid then spatially schedules the location of EVs load. Based on a power system benchmark with a 10-unit transmission grid and an IEEE 33-bus distribution grid, the performance of the proposed bi-layer optimization strategy is evaluated. The impacts of electricity price profile, EVs penetration and EVs load location are analyzed. Simulation results show that the proposed bi-layer optimization strategy can accommodate wind power and improve both the economics of grid operation and benefits of EV users by scheduling EVs charging and discharging temporally and spatially. Also, the results have shown that the location of EVs charging and discharging load is critical for the distribution network planning.
Keywords: Unit commitment; Electric vehicle; Bi-layer optimization; Charging and discharging scheduling; Wind power; PM2.5 emissions (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916300769
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:168:y:2016:i:c:p:179-192
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.01.089
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().