Pareto-efficient double auction power transactions for economic reactive power dispatch
Biswas (Raha), Syamasree,
Kamal Krishna Mandal and
Niladri Chakraborty
Applied Energy, 2016, vol. 168, issue C, 610-627
Abstract:
Pareto-efficient 12-h variable double auction bilateral power transactions have been considered here. Effect of such on the economic welfare is observed while solving the reactive power dispatch (RPD) by differential evolution with random localization technique. This has been accomplished by a combination of static and dynamic var compensators like capacitor and superconducting magnetic energy storage (SMES) considering the IEEE 57-bus network. Out of these 12-h variable power transactions, the Pareto efficient transactions which were reconciled by planed biding, have provided the maximum global welfare. The economics were ascertained by cumulating the net benefits of the market players and the reduced merchandising surplus caused by the var compensators. The combined capacitor–SMES based Pareto efficient observations on economic RPD were able to reduce 7.41% more power loss and 2.5 times improved economic benefit over the singular capacitor placement. This further achieved 0.069% profit enhancement in connection to the fundamental global welfare.
Keywords: Pareto efficiency; Global welfare; Merchandising surplus; Superconducting magnetic energy storage (SMES); Differential evolution with random localization (DERL); Variable power transaction based reactive power dispatch (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916300198
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:168:y:2016:i:c:p:610-627
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.01.039
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().