EconPapers    
Economics at your fingertips  
 

Day-ahead resource scheduling of a renewable energy based virtual power plant

Ali Ghahgharaee Zamani, Alireza Zakariazadeh and Shahram Jadid

Applied Energy, 2016, vol. 169, issue C, 324-340

Abstract: The evolution of energy markets is accelerating in the direction of a greater reliance upon distributed energy resources (DERs). To manage this increasing two-way complexity, virtual power plants (VPPs) are being deployed today all over the world. In this paper, a probabilistic model for optimal day ahead scheduling of electrical and thermal energy resources in a VPP is proposed where participation of energy storage systems and demand response programs (DRPs) are also taken into account. In the proposed model, energy and reserve is simultaneously scheduled considering the uncertainties of market prices, electrical demand and intermittent renewable power generation. The Point Estimate Method (PEM) is applied in order to model the uncertainties of VPP’s scheduling problem. Moreover, the optimal reserve scheduling of VPP is presented which efficiently decreases VPP’s risk facing the unexpected fluctuations of uncertain parameters at the power delivery time. The results demonstrated that implementation of demand response programs (DRPs) would decrease total operation costs of VPP as well as its dependency on the upstream network.

Keywords: Virtual Power Plant (VPP); Optimal energy and reserve scheduling; Demand Response Program (DRP); Point Estimate Method (PEM); Combined Heat and Power (CHP) (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (66)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916301349
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:169:y:2016:i:c:p:324-340

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.02.011

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:169:y:2016:i:c:p:324-340