A self-adaptive evolutionary fuzzy model for load forecasting problems on smart grid environment
Vitor N. Coelho,
Igor M. Coelho,
Bruno N. Coelho,
Agnaldo J.R. Reis,
Rasul Enayatifar,
Marcone J.F. Souza and
Frederico G. Guimarães
Applied Energy, 2016, vol. 169, issue C, 567-584
Abstract:
The importance of load forecasting has been increasing lately and improving the use of energy resources remains a great challenge. The amount of data collected from Microgrid (MG) systems is growing while systems are becoming more sensitive, depending on small changes in the daily routine. The need for flexible and adaptive models has been increased for dealing with these problems. In this paper, a novel hybrid evolutionary fuzzy model with parameter optimization is proposed. Since finding optimal values for the fuzzy rules and weights is a highly combinatorial task, the parameter optimization of the model is tackled by a bio-inspired optimizer, so-called GES, which stems from a combination between two heuristic approaches, namely the Evolution Strategies and the GRASP procedure. Real data from electric utilities extracted from the literature are used to validate the proposed methodology. Computational results show that the proposed framework is suitable for short-term forecasting over microgrids and large-grids, being able to accurately predict data in short computational time. Compared to other hybrid model from the literature, our hybrid metaheuristic model obtained better forecasts for load forecasting in a MG scenario, reporting solutions with low variability of its forecasting errors.
Keywords: Load forecasting; Smart grids; Microgrids; Fuzzy logics; Hybrid forecasting model; Parameter optimization (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (32)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916301684
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:169:y:2016:i:c:p:567-584
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.02.045
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).