EconPapers    
Economics at your fingertips  
 

Experimental study on catalytic cracking of model tar compounds in a dual layer granular bed filter

Fu-Xiang Hu, Guo-Hua Yang, Guo-Zhu Ding, Zhen Li, Ka-Shuai Du, Zhi-Fa Hu and Su-Rui Tian

Applied Energy, 2016, vol. 170, issue C, 47-57

Abstract: To simplify the purification process of hot effluent gases produced by biomass and/or coal gasification, an integrated technique employing dual layer granular beds for the simultaneous removal of particulates and tar at high temperature (750–850°C) has been proposed. Compared to the well studied process of particulate removal, investigations for the catalytic cracking of tar are inadequate. The present work conducted an experimental study of the catalytic cracking of tar based on two model compounds: toluene and methylnaphthalene. The experiments were conducted on a granular bed filter with an inner diameter of 40mm and a height of 1000mm. The catalytic cracking performances on an expanded perlite granule layer, an olivine granule layer, and a dual layer granular bed comprised of an upper layer of expanded perlite granules and a lower layer of olivine granules were investigated individually. It was found that the expanded perlite granule layer alone was effective for toluene cracking, and the efficiency was increased with increasing reaction temperature and gas residence time. The olivine granule layer provided excellent catalytic activity for toluene cracking. Furthermore, olivine granules exhibited significantly improved catalytic activity when calcinated at temperatures greater than 900°C, or impregnated with NiO. The conversion efficiencies of toluene and methylnaphthalene attained values as great as 98.89% and 79.33%, respectively, at a temperature of 800°C over a dual layer granular bed comprised of a 150mm thick upper layer of expanded perlite granules and a 50mm thick lower layer of 3wt% NiO impregnated olivine granules.

Keywords: Dual layer granular bed filter; High temperature particulate filtration; Tar removal; Catalytic cracking (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916302197
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:170:y:2016:i:c:p:47-57

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.02.080

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:170:y:2016:i:c:p:47-57