Reinforcement learning-based real-time energy management for a hybrid tracked vehicle
Yuan Zou,
Teng Liu,
Dexing Liu and
Fengchun Sun
Applied Energy, 2016, vol. 171, issue C, 372-382
Abstract:
To realize the optimal energy allocation between the engine-generator and battery of a hybrid tracked vehicle (HTV), a reinforcement learning-based real-time energy-management strategy was proposed. A systematic control-oriented model for the HTV was built and validated through the test bench, including the battery pack, the engine-generator set (EGS), and the power request. To use effectively the statistical information of power request online, a Markov chain-based real-time power request recursive algorithm for learning transition probabilities was derived and validated. The Kullback–Leibler (KL) divergence rate was adopted to determine when the transition probability matrix and the optimal control strategy update in real time. Reinforcement learning (RL) was applied to compare quantitatively the effects of different forgetting factors and KL divergence rates on reducing fuel consumption. RL has also been used to optimize the control strategy for HTV, compared to preliminary and dynamic programming-based control strategies. The real-time and robust performance of the proposed online energy management strategy was verified under two driving schedules collected in the field test. The simulation results indicate the proposed RL-based energy management strategy can significantly improve fuel efficiency and can be applied in real time.
Keywords: Hybrid tracked vehicle; Markov chain; Kullback–Leibler divergence rate; Reinforcement learning; Energy management; Control strategy (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (58)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916304081
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:171:y:2016:i:c:p:372-382
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.03.082
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().