EconPapers    
Economics at your fingertips  
 

Fuel cell electric vehicle as a power plant and SOFC as a natural gas reformer: An exergy analysis of different system designs

A. Fernandes, T. Woudstra, A. van Wijk, L. Verhoef and P.V. Aravind

Applied Energy, 2016, vol. 173, issue C, 13-28

Abstract: Delft University of Technology, under its “Green Village” programme, has an initiative to build a power plant (car parking lot) based on the fuel cells used in vehicles for motive power. It is a trigeneration system capable of producing electricity, heat, and hydrogen. It comprises three main zones: a hydrogen production zone, a parking zone, and a pump station zone. This study focuses mainly on the hydrogen production zone which assesses four different system designs in two different operation modes of the facility: Car as Power Plant (CaPP) mode, corresponding to the open period of the facility which uses fuel cell electric vehicles (FCEVs) as energy and water producers while parked; and Pump mode, corresponding to the closed period which compresses the hydrogen and pumps to the vehicle’s fuel tank. These system designs differ by the reforming technology: the existing catalytic reformer (CR) and a solid oxide fuel cell operating as reformer (SOFCR); and the option of integrating a carbon capture and storage (CCS).

Keywords: SOFC; Reforming; Vehicle-to-grid (V2G); Exergy; Trigeneration (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916304445
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:173:y:2016:i:c:p:13-28

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.03.107

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:173:y:2016:i:c:p:13-28