Optimal control of integrated energy management/mode switch timing in a three-power-source hybrid powertrain
Yi-Hsuan Hung,
Yu-Ming Tung and
Chun-Hsin Chang
Applied Energy, 2016, vol. 173, issue C, 184-196
Abstract:
This study designed an efficient, easily implementable online optimal control strategy for three-power-source hybrid electric powertrains. The energy improvement of optimal energy management and integrated optimal energy management/mode switch timing relative to the energy consumption in rule-based control was evaluated. First, a control-oriented vehicle model with seven subsystems was developed. For achieving rule-based control, the torque distribution among the engine, motor, and generator was designed according to performance maps of power sources. To conduct power allocation of three sources, two power-split ratios were obtained. Furthermore, for switching between three operation modes (hybrid, electric vehicle, and range extension modes), two hysteresis zones based on the required power and battery state-of-charge were used with four designed variables (boundaries). A global search method was used for the optimization. A cost function with a physical-constraint penalty was used to maximize the travel distance. A simulation performed using nested-structure for-loop programs showed that the mileage extension (energy improvement) for the optimal energy management and integrated optimal energy management/mode switch timing relative to the mileage in rule-based control for two driving cycles, NEDC and FTP-75, were [26.32%, 30.52%] and [17.22%, 20.68%], respectively. The improvements of CO2 reduction were [26.34%, 27.10%] and [23.47%, 24.12%], respectively, thus proving that this study significantly reduced energy consumption and pollutant emission by employing an easily designed control strategy. Online parameter tuning and implementation of optimal energy management in a real vehicle will be conducted in the future.
Keywords: Energy improvement; Energy management; Operation mode; Optimization; Hybrid powertrain (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916304767
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:173:y:2016:i:c:p:184-196
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.04.025
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().