A review on water fault diagnosis of PEMFC associated with the pressure drop
Pucheng Pei,
Yuehua Li,
Huachi Xu and
Ziyao Wu
Applied Energy, 2016, vol. 173, issue C, 366-385
Abstract:
The pressure difference between the inlet and outlet of the reactant in fuel cells is called the pressure drop, which is related to the water amount inside the fuel cells. In recent years there have been many studies that used the pressure drop to detect the water content and diagnose water fault of proton exchange membrane fuel cells (PEMFCs). To our knowledge, there has not been a systematic review of these studies. In this paper, the effect variables of pressure drop are reviewed firstly. Then estimations of the theoretical pressure drop are reviewed mainly based on the following four aspects: Bernoulli’s equation, two-phase flow multiplier, Darcy’s law and artificial intelligence. Afterward, the water fault diagnosis based on the pressure drop using the following six indicators are reviewed: indicator of direct pressure drop, its deviation, frequency, multiplier, the ratio of pressure drop to flow rate and the flooding degree. In addition, the strategies of water fault recovery are also summarized. Finally the merits, demerits and application prospects of pressure drop-based water fault diagnosis are presented.
Keywords: Pressure drop; Diagnosis of water fault; Pressure drop estimation; Artificial intelligence; PEMFC (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (38)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916305001
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:173:y:2016:i:c:p:366-385
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.04.064
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().