Modelling electricity futures prices using seasonal path-dependent volatility
Viviana Fanelli,
Lucia Maddalena and
Silvana Musti
Applied Energy, 2016, vol. 173, issue C, 92-102
Abstract:
The liberalization of electricity markets gave rise to new patterns of futures prices and the need of models that could efficiently describe price dynamics grew exponentially, in order to improve decision making for all of the agents involved in energy issues. Although there are papers focused on modelling electricity as a flow commodity by using Heath et al. (1992) approach in order to price futures contracts, the literature is scarce on attempts to consider a seasonal volatility as input to models. In this paper, we propose a futures price model that allows looking into observed stylized facts in the electricity market, in particular stochastic price variability, and periodic behavior. We consider a seasonal path-dependent volatility for futures returns that are modelled in Heath et al. (1992) framework and we obtain the dynamics of futures prices. We use these series to price the underlying asset of a call option in a risk management perspective. We test the model on the German electricity market, and we find that it is accurate in futures and option value estimates. In addition, the obtained results and the proposed methodology can be useful as a starting point for risk management or portfolio optimization under uncertainty in the current context of energy markets.
Keywords: Electricity futures price; Forecast; Seasonal path-dependent volatility; Heath–Jarrow–Morton model; Option pricing (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916304524
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:173:y:2016:i:c:p:92-102
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.04.003
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().