Making energy simulation easier for future climate – Synthesizing typical and extreme weather data sets out of regional climate models (RCMs)
Vahid M. Nik
Applied Energy, 2016, vol. 177, issue C, 204-226
Abstract:
Higher availability of future climate data sets, generated by regional climate models (RCMs) with fine temporal and spatial resolutions, improves and facilitates the impact assessment of climate change. Due to significant uncertainties in climate modeling, several climate scenarios should be considered in the impact assessment. This increases the number of simulations and size of data sets, complicating the assessment and decision making. This article suggests an easy-to-use method to decrease the number of simulations for the impact assessment of climate change in energy and building studies. The method is based on synthesizing three sets of weather data out of one or more RCMs: one typical and two extremes. The method aims at decreasing the number of weather data sets without losing the quality and details of the original future climate scenarios. The application of the method is assessed for an office building in Geneva and the residential building stock in Stockholm.
Keywords: Climate change; Weather data; Energy simulation; Regional climate models; Big data; Building (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916307127
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:177:y:2016:i:c:p:204-226
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.05.107
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().