EconPapers    
Economics at your fingertips  
 

A multi-agent based scheduling algorithm for adaptive electric vehicles charging

Erotokritos Xydas, Charalampos Marmaras and Liana M. Cipcigan

Applied Energy, 2016, vol. 177, issue C, 354-365

Abstract: This paper presents a decentralized scheduling algorithm for electric vehicles charging. The charging control model follows the architecture of a Multi-Agent System (MAS). The MAS consists of an Electric Vehicle (EV)/Distributed Generation (DG) aggregator agent and “Responsive” or “Unresponsive” EV agents. The EV/DG aggregator agent is responsible to maximize the aggregator’s profit by designing the appropriate virtual pricing policy according to accurate power demand and generation forecasts. “Responsive” EV agents are the ones that respond rationally to the virtual pricing signals, whereas “Unresponsive” EV agents define their charging schedule regardless the virtual cost. The performance of the control model is experimentally demonstrated through different case studies at the micro-grid laboratory of the National Technical University of Athens (NTUA) using Real Time Digital Simulator. The results highlighted the adaptive behaviour of “Responsive” EV agents and proved their ability to charge preferentially from renewable energy sources.

Keywords: Adaptive charging; Decentralized charging control algorithm; Electric vehicles and multi-agent (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (34)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916306286
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:177:y:2016:i:c:p:354-365

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.05.034

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:177:y:2016:i:c:p:354-365