EconPapers    
Economics at your fingertips  
 

A novel bidirectional mechanism based on time series model for wind power forecasting

Yongning Zhao, Lin Ye, Zhi Li, Xuri Song, Yansheng Lang and Jian Su

Applied Energy, 2016, vol. 177, issue C, 793-803

Abstract: A novel bidirectional mechanism and a backward forecasting model based on extreme learning machine (ELM) are proposed to address the issue of ultra-short term wind power time series forecasting. The backward forecasting model consists of a backward ELM network and an optimization algorithm. The reverse time series is generated to train backward ELM, assuming that the value to be forecasted is already known whereas one of the previous measurements is treated as unknown. In the framework of bidirectional mechanism, the forward forecast of a standard ELM network is incorporated as the initial value of optimization algorithm, by which error between the backward ELM output and the previous measurement is minimized for backward forecasting. Then the difference between forward and backward forecasting results is used as a criterion to develop the methods to correct forward forecast. If the difference exceeds a predefined threshold, the final forecast equals to the average of forward forecast and latest measurement. Otherwise the forward forecast keeps as the final forecast. The proposed models are applied to forecast wind farm production in six time horizons: 1–6h. A comprehensive error analysis is carried out to compare the performance with other approaches. Results show that forecast improvement is observed based on the proposed bidirectional model. Some further considerations on improving wind power short term forecasting accuracy by use of bidirectional mechanism are discussed as well.

Keywords: Wind power forecasting; Wind farm; Extreme learning machine; Optimization algorithm (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (65)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916304263
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:177:y:2016:i:c:p:793-803

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.03.096

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:177:y:2016:i:c:p:793-803