Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review
Tao Dong,
Eric P. Knoshaug,
Philip T. Pienkos and
Lieve M.L. Laurens
Applied Energy, 2016, vol. 177, issue C, 879-895
Abstract:
Biological lipids derived from oleaginous microorganisms are promising precursors for renewable biofuel productions. Direct lipid extraction from wet cell-biomass is favored because it eliminates the need for costly dehydration. However, the development of a practical and scalable process for extracting lipids from wet cell-biomass is far from ready to be commercialized, instead, requiring intensive research and development to understand the lipid accessibility, mechanisms in mass transfer and establish robust lipid extraction approaches that are practical for industrial applications. This paper aims to present a critical review on lipid recovery in the context of biofuel productions with special attention to cell disruption and lipid mass transfer to support extraction from wet biomass.
Keywords: Oleaginous microorganism; Lipid; Wet extraction; Mass transfer; Cell disruption; Biofuel (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (31)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916307772
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:177:y:2016:i:c:p:879-895
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.06.002
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().