EconPapers    
Economics at your fingertips  
 

A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle

Zutao Zhang, Xingtian Zhang, Weiwu Chen, Yagubov Rasim, Waleed Salman, Hongye Pan, Yanping Yuan and Chunbai Wang

Applied Energy, 2016, vol. 178, issue C, 177-188

Abstract: The energy source of vehicles is changing rapidly and significantly in recent years with the increase in renewable energy technologies especially in the case of electric vehicles (EVs). A smart solution has emerged in which the wasted energy in a vehicle’s shock absorber is converted to an alternative energy for the cars themselves, and this is called an energy regenerative shock absorber. Whereas existing regenerative shock absorbers mainly focus on the methods of energy harvesting, there is no such regenerative shock absorber for use in extended range EVs. In this paper, we present a novel high-efficiency energy regenerative shock absorber using supercapacitors that is applied to extend the battery endurance of an EV. A renewable energy application scheme using regenerative shock absorbers for range extended EVs is designed and proposed for the first time. This system collects the wasted suspension power from the moving vehicle by replacing the conventional shock absorbers as these energies are normally dissipated through friction and heat. The proposed system consists of four main components: the vibration of the suspension input module, transmission module, generator module and power storage module. The suspension vibration induced by the road roughness acts as the system excitation to the energy regenerative shock absorber. The vibration is then transmitted through the mechanical transmission module, which changes bidirectional vibration into unidirectional rotation based on gears and a rack to drive the generator module. The power storage module stores the regenerative energy of the shock absorber in the supercapacitor, which is applied to the EV to improve the cruising mileage. Higher efficiency up to 54.98% at most and 44.24% on average were achieved in the simulation and bench tests is proof that the energy regenerative shock absorber is beneficial and promising in generating energy used for renewable energy applications in extended range EVs.

Keywords: Regenerative; Shock absorber; Supercapacitors; Renewable energy; Range extended electric vehicle (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (47)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916308285
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:178:y:2016:i:c:p:177-188

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.06.054

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:178:y:2016:i:c:p:177-188