Ocean thermal energy harvesting with phase change material for underwater glider
Zhesong Ma,
Yanhui Wang,
Shuxin Wang and
Yanan Yang
Applied Energy, 2016, vol. 178, issue C, 557-566
Abstract:
Ocean thermal energy is formed by temperature difference between sea surface and deep sea. Underwater glider is a new kind of autonomous underwater vehicle. It ascends and descends between the sea surface and deep sea periodically by adjusting its net buoyancy. Thermal underwater glider can harvest ocean thermal energy through the utilization of phase change material (PCM) and convert it into mechanical energy for buoyancy-driven. In this paper, the fundamental principle of this thermal engine is unveiled. A nonlinear model for relationship between system pressure and phase change rate is established. Based on the established nonlinear model, influencing factors for system pressure and stored energy are analyzed comprehensively. Selected PCM is Hexadecane. Value range for air solubility in liquidus PCM is 0.06–0.1, and for residual air in the system is −0.02 to 0.05. The influence of these two factors on relative energy storage is similar. For typical values of air solubility 0.08 and residual air 0.005, utilization ratio of the thermal engine is less than 50%. Through experiment in the lake, the nonlinear model was verified, maximum system pressure was 12.5MPa, and average stored energy of each cycle was 2.48kJ. A prototype of thermal underwater glider has also been tested in the South China Sea. It had worked continuously for 29days without any failure. Total number of working profile was 121 and total cruising range was 677km, total stored energy was 300kJ. High reliability and performance was validated by the sea trial.
Keywords: Ocean thermal energy; Phase change material; Underwater glider; Utilization ratio; Energy storage (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916308534
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:178:y:2016:i:c:p:557-566
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.06.078
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().