Robust day-ahead scheduling of smart distribution networks considering demand response programs
Mohammadreza Mazidi,
Hassan Monsef and
Pierluigi Siano
Applied Energy, 2016, vol. 178, issue C, 929-942
Abstract:
Increasing penetration of variable loads and renewable resources in smart distribution networks brings about great challenges to the conventional scheduling and operation due to the uncertain nature. This paper presents a novel uncertainty handling framework, based on the underlying idea of robust optimization approach, to portray the uncertainties of load demands and wind power productions over uncertainty sets. Accordingly, a tractable min–max–min cost model is proposed to find a robust optimal day-ahead scheduling of smart distribution network immunizing against the worst-case realization of uncertain variables. In addition, considering demand response programs as one of the important resources in the smart distribution network, participation of customers in both energy and reserve scheduling is explicitly formulated. As the proposed min–max–min cost model cannot be solved directly by commercial optimization packages, a decomposition algorithm is presented based on dual cutting planes to decouple the problem into a master problem and a sub-problem. The master problem finds the day-ahead scheduling, while the sub-problem determines the worst-case realization of uncertain variables within uncertainty sets. Computational results for the modified version of IEEE 33-bus distribution test network demonstrate the effectiveness and efficiency of the proposed model.
Keywords: Day-ahead scheduling; Demand response; Dual cutting planes; Robust optimization; Smart distribution network; Uncertainty set (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916307917
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:178:y:2016:i:c:p:929-942
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.06.016
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().