EconPapers    
Economics at your fingertips  
 

Robust day-ahead scheduling of smart distribution networks considering demand response programs

Mohammadreza Mazidi, Hassan Monsef and Pierluigi Siano

Applied Energy, 2016, vol. 178, issue C, 929-942

Abstract: Increasing penetration of variable loads and renewable resources in smart distribution networks brings about great challenges to the conventional scheduling and operation due to the uncertain nature. This paper presents a novel uncertainty handling framework, based on the underlying idea of robust optimization approach, to portray the uncertainties of load demands and wind power productions over uncertainty sets. Accordingly, a tractable min–max–min cost model is proposed to find a robust optimal day-ahead scheduling of smart distribution network immunizing against the worst-case realization of uncertain variables. In addition, considering demand response programs as one of the important resources in the smart distribution network, participation of customers in both energy and reserve scheduling is explicitly formulated. As the proposed min–max–min cost model cannot be solved directly by commercial optimization packages, a decomposition algorithm is presented based on dual cutting planes to decouple the problem into a master problem and a sub-problem. The master problem finds the day-ahead scheduling, while the sub-problem determines the worst-case realization of uncertain variables within uncertainty sets. Computational results for the modified version of IEEE 33-bus distribution test network demonstrate the effectiveness and efficiency of the proposed model.

Keywords: Day-ahead scheduling; Demand response; Dual cutting planes; Robust optimization; Smart distribution network; Uncertainty set (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916307917
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:178:y:2016:i:c:p:929-942

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.06.016

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:178:y:2016:i:c:p:929-942