An automated optimization method for calibrating building energy simulation models with measured data: Orientation and a case study
Tao Yang,
Yiqun Pan,
Jiachen Mao,
Yonglong Wang and
Zhizhong Huang
Applied Energy, 2016, vol. 179, issue C, 1220-1231
Abstract:
Due to the discrepancy between simulated energy consumption and measured data, it is essential to calibrate building energy models to improve its fidelity in evaluating the performance of retrofitting. Currently, most calibration methods are conducted manually to minimize this discrepancy, heavily relying on the knowledge and experience of analysts to discover a reasonable set of parameters. Because of the myriad independent and interdependent variables involved, the reliability of the entire simulation is largely undermined. In the presented paper, we propose a complete and fluent optimization automated calibration flow by introducing the mathematical optimization method (Particle Swarm Optimization is adopted) into the building energy model calibration process, thus leveraging the advantages of the efficiency and flexibility of the automated computer procedure. This approach is also characterized by its inclusivity, for it is compatible with other advanced manual methods and able to largely assist the experts in improving the efficiency of tuning relative input parameters. Moreover, a case in Shanghai is presented to verify the validity of the proposed method. After calibration, the simulation model demonstrates a satisfactory predicting accuracy. The calculated electricity consumption from the HVAC, lighting and equipment matches the actual monitored data with 11.6%, 7.3% and 7.2% CV (RMSE), respectively, and the total electricity consumption is within 6.1%.
Keywords: Building energy simulation; Automated calibration; Sensitivity analysis; Optimization; Particle Swarm Optimization; Sub-metering (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916310236
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:179:y:2016:i:c:p:1220-1231
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.07.084
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().