Exergoeconomic analysis and optimization of a flash-binary geothermal power system
Yajing Zhao and
Jiangfeng Wang
Applied Energy, 2016, vol. 179, issue C, 159-170
Abstract:
In the present study, a flash-binary geothermal power system using organic Rankine cycle (ORC) as subsystem was modeled under a steady state. An exergoeconomic performance indicator, namely the average levelized cost per unit of exergy products for the overall system (csystem), was newly developed to analyze and optimize the system. Parametric analysis was performed to examine the effects of key thermodynamic parameters including flash pressure, ORC turbine inlet pressure and ORC turbine inlet temperature on the system performance. Exergoeconomic optimization for minimum csystem was carried out on the system. As comparison, thermodynamic optimization for maximum exergy efficiency was also conducted. Optimization results implied that the most exergoeconomically effective system couldn’t obtain the best system thermodynamic performance and vice versa. It was shown that in exergoeconomics the significant improvement in system’s economy is at the expense of the slight diminishment in system’s thermodynamic performance. Therefore, the exergoeconomic models developed in the current study provide comprehensive understanding of geothermal power systems as well as useful guidelines for designers.
Keywords: Organic Rankine cycle; Exergoeconomic analysis; Flash-binary; Geothermal energy; Optimization (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (35)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916308832
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:179:y:2016:i:c:p:159-170
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.06.108
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().